SYNTHESIS OF THREE ANALOGUES OF TUFTSIN WITH 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID*

Zdenko Procházka ${ }^{a}$ and Nadezhda I. Veretennikova ${ }^{b}$
${ }^{a}$ Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 16610 Prague 6, Czechoslovakia and
${ }^{b}$ Institute of Organic Synthesis, Latvian Academy of Sciences, Riga, U.S.S.R.

Using 1-aminocyclopropane-1-carboxylic acid**, three analogues of tuftsin were synthesized in which this amino acid is in position 1 (replacement of threonine) or 3 (replacement of proline) or in both these positions, i.e. [Acc $\left.{ }^{1}\right]$ tuftsin, $\left[\mathrm{Acc}^{3}\right]$ tuftsin and $\left[A c^{1}, A c c^{3}\right] t u f t s i n, ~ r e s p e c t i v e l y . ~ T h e ~ a n a l o g u e s ~ w e r e ~ p r e p a r e d ~ b y ~ t h e ~ s t e p w i s e ~$ methodology. During the synthesis, only the amino group in the lysine side chain was protected (with benzyloxycarbonyl group), the guanidine group of arginine was only protonated and the threonine hydroxyl remained free. Since the carboxy group at the carboxyl end was also unprotected, the peptide chain was constructed using the method of active pentafluorophenyl esters. The α-amino groups were protected with tert-butyloxycarbonyl group, except for 1-aminocyclopropane-1--carboxylic acid which was protected with benzyloxycarbonyl group. The former protecting group was removed by treatment with 70% aqueous trifluoroacetic acid, the latter with hydrobromic acid in acetic acid. The final products were purified by HPLC. The whole synthesis is shown in Scheme 1.

EXPERIMENTAI

Melting points were determined on a Koffer block or a Digital Melting Point Analyzer, Model 355 (Fisher) and are uncorrected. Thin-layer chromatography was performed on Merck plates (Kieselgel $60 \mathrm{~F}-254$) in the following solvent systems: A 2-propanol-pyridine-acetic acid-water (10:5:4:4), B 1-propanol-ammonia (7:3), C 1-butanol-ethanol-acetic acid-water (80:10:5: : 30), D benzene-ethyl acetate-acetic acid ($60: 20: 1$), E 1-butanol-pyridine-acetic acid-water ($4: 1: 1: 2$), F 1-butanol-pyridine-acetic acid-water ($15: 10: 3: 12$). Paper electrophoresis was performed in a moist chamber in 5 M acetic acid, pH $1 \cdot 7$ on a paper FN-15 (Filtrak,G.D.R.), potential gradient $20 \mathrm{~V} / \mathrm{cm}, 90 \mathrm{~min}$. Spots in TLC and electrophoresis were detected with ninhydrin or by the chlorination method using $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethyldiaminodiphenylmethane ${ }^{2}$.

* Part CCXVI in the series Amino Acids and Peptides; Part CCXV Collect. Czech. Chem. Commun. 55, 1873 (1990).
** All the chiral amino acids, mentioned in this work, are of the L -series. The nomenclature and symbols of the amino acids and peptides obey the published recommendations ${ }^{1}$; Acc denotes the 1-aminocyclopropane-1-carboxylic acid, Pfp pentafluorophenol.

Removal of ammonium acetate by freeze-drying was carried out at $50^{\circ} \mathrm{C}$ and 150 Pa . Samples for amino acid analysis were hydrolyzed with $6 \mathrm{~m}-\mathrm{HCl}$ at $105^{\circ} \mathrm{C}$ for 20 h and were analyzed on an automatic two-column analyzer 6020 (Developmental Workshops of Czechoslovak Academy of Sciences) or on a D-500 (Durrum, U.S.A.) analyzer. Optical rotations were measured on

a Perkin-Elmer 141 MCA instrument (Norwalk, U.S.A.). High performance liquid chromatography (HPLC) was carried out on an SP-8700 instrument equipped with an SP-8400 detector and an SP-4100 integrator (all from Spectra-Physics), using a Separon SIX C18 ($7 \mu \mathrm{~m}, 0.32 \times$ 15 cm) column (Laboratorní přistroje, Prague), or on a Du Pont 830 instrument using a Zorbax C_{8} column ($0.46 \times 15 \mathrm{~cm}$). Unless stated otherwise, preparative chromatography was performed on a Du Pont 830 instrument using a $2.12 \times 25 \mathrm{~cm}$ Zorbax column.

Pentafluorophenyl Benzyloxycarbonyl-1-aminocyclopropane-1-carboxylate (I)
Dicyclohexylcarbodiimide ($2.2 \mathrm{~g} ; 10.7 \mathrm{mmol}$) was added at $-10^{\circ} \mathrm{C}$ to a solution of benzyloxy-carbonyl-1-aminocyclopropane-1-carboxylic acid ${ }^{3}(2.1 \mathrm{~g} ; 9.0 \mathrm{mmol})$ and pentafluorophenol (2.5 g ; 13.5 mmol) in ethyl acetate (75 ml) and the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 1 h . After standing overnight at room temperature, the separated dicyclohexylurea was removed by filtration. The filtrate was concentrated, the residue dissolved in a small amount of ether, diluted
with hexane and set aside overnight. The crystalline product was filtered and washed with hexane to give $3.28 \mathrm{~g}\left(91 \%\right.$) of ester I, m.p. $114.5-115.5^{\circ}$ C. TLC: $R_{F} 0.41$ (B), 0.81 (D). For $\mathrm{C}_{18} \mathrm{H}_{12}$. . $\mathrm{NO}_{4} \mathrm{~F}_{5}(401 \cdot 3)$ calculated: $53 \cdot 88 \% \mathrm{C}, 3 \cdot 01 \% \mathrm{H}, 23 \cdot 67 \% \mathrm{~F}, 3.49 \% \mathrm{~N}$; found: $53 \cdot 80 \% \mathrm{C}, 3 \cdot 13 \% \mathrm{H}$, 23.54% F, $3.35 \% \mathrm{~N}$.

Benzyloxycarbonyl-1-aminocyclopropane-1-carbonyl-arginine (II)

A solution of arginine ($0.52 \mathrm{~g} ; 3.0 \mathrm{mmol}$) in water (7 ml) was added to a vigorously stirred solution of ester $I(1.3 \mathrm{~g} ; 3.25 \mathrm{mmol}$) in dioxane (14 ml). The reaction mixture was stirred at room temperature for 2 h , the solvent evaporated and the residue suspended in dimethylformamide $(10 \mathrm{ml})$. The suspension was stirred for 24 h (no free arginine present according to TLC), diluted with ethyl acetate (100 ml) and set aside in a refrigerator overnight. The product was filtered and washed with ethyl acetate and ether; yield $1.07 \mathrm{~g}(92 \%)$ of dipeptide $I I$, m.p. $148-150^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}-22.5^{\circ}\left(c 0.48,10 \%\right.$ acetic acid). TLC: $R_{F} 0.76(\mathrm{~A}), 0.49(\mathrm{~B}), 0.46$ (C). For $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{5}$. . $\mathrm{H}_{2} \mathrm{O}(409 \cdot 4)$ calculated: $52 \cdot 80 \% \mathrm{C}, 6 \cdot 65 \% \mathrm{H}, 17 \cdot 10 \% \mathrm{~N}$; found: $53 \cdot 13 \% \mathrm{C}, 6 \cdot 65 \% \mathrm{H}, 17 \cdot 17 \% \mathrm{~N}$.

N^{γ}-Tert-butyloxycarbonyl- N^{ε}-benzyloxycarbonyllysyl-
 -1-aminocyclopropane-1-carbonyl-arginine (III)

To a solution of dipeptide $I I(0.98 \mathrm{~g} ; 2.5 \mathrm{mmol})$ in acetic acid (4 ml) was added $35 \% \mathrm{HBr}$ in acetic acid (4 ml). After standing for 1 h at room temperature, the reaction mixture was diluted with ether. The separated hydrobromide was triturated several times with ether, filtered, dried in a desiccator (NaOH) overnight, dissolved in water $(20 \mathrm{ml})$ and the solution was adjusted to pH $9 \cdot 0$ with Dowex $1: 2\left(\mathrm{OH}^{-}\right.$form). The ion exchanger was filtered off and washed with water. Water was evaporated from the combined filtrates, the remaining dipeptide was dissolved in water (5 ml) and the solution poured into a stirred solution of pentafluorophenyl ester of N^{α}-tert--butyloxycarbonyl- N^{ε}-benzyloxycarbonyllysine ${ }^{4}(1.7 \mathrm{~g} ; 3 \mathrm{mmol})$ in dioxane $(10 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 2 h , the solvent evaporated and the residue dissolved in dimethylformamide (4 ml). After stirring for 24 h (TLC in system C detected no starting dipeptide), the solvent was evaporated and the residue crystallized from ethanol (3 ml), ethyl acetate (9 ml) and ether (90 ml). Filtration and washing with ether afforded the crude product which consisted of three compounds (TLC in (C): $R_{F} 0.86,0.52$ and 0.33 ; HPLC in methanol- 0.05% aqueous triffuoroacetic acid ($70: 30$): $k 0.29,3.00,5 \cdot 43$). The crude product was purified by HPLC on a reversed phase (350 mg batches; $1.2 \times 25 \mathrm{~cm}$ column, Separon SIC_{18} : methanol-0.2 $-\mathrm{CH}_{3} \mathrm{COONH}_{4} 55: 45$; flow rate $4.5 \mathrm{ml} / \mathrm{min}$). Three fractions were obtained: 1) fraction $19 \cdot 5-44 \cdot 5 \mathrm{ml}, R_{F} 0 \cdot 33(\mathrm{C})$, contained Acc and Arg in the ratio $1: 1$ (amino acid analysis). According to IR spectrum the compound is likely a diketopiperazine: 3220,1680 , $1670 \mathrm{~cm}^{-1}$ (cis-CONH): 2) fraction $84-100 \mathrm{ml}, R_{F} 0.86$ (C), according to amino acid analysis it contained only Lys; 3) fraction $108-138 \mathrm{ml} ; R_{F} 0.52$ (C), 0.91 (A), contained the desired product. The solvent was evaporated, the ammonium acetate removed by freeze-drying and the residue crystallized from ethanol-ethyl acetate-ether ($1: 3: 30$). Total yield of the pure tripeptide $I I I$ was $410 \mathrm{mg}(24 \%)$; m.p. $128-131 \mathrm{C},[\alpha]_{\mathrm{D}}-9 \cdot 9^{\circ}$ (c $0 \cdot 3,10 \%$ acetic acid). Amino acid analysis: Lys $1 \cdot 02$, Arg $0 \cdot 97$, Acc $1 \cdot 03$. For $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{8} .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (646.7) calculated: $53 \cdot 86 \% \mathrm{C}$, $7 \cdot 48^{\circ}{ }_{\circ} \mathrm{H}, 15 \cdot 16 \% \mathrm{~N}$; found: $54 \cdot 22 \% \mathrm{C}, 7 \cdot 12 \% \mathrm{H}, 14 \cdot 87 \% \mathrm{~N}$.

```
N
-1-aminocyclopropane-1-carbonyl-arginine (IVa)
```

The protected tripeptide $I I I(270 \mathrm{mg} ; 0.437 \mathrm{mmol})$ was dissolved in 70% aqueous triffuoroacetic acid (3 ml). After 90 min , the mixture contained (according to TLC) exclusively N^{ε}-benzyloxy-
carbonyllysyl-1-aminocyclopropane-1-carbonyl-arginine ($R_{F} 0.59$ in (A)) and no N^{α}-protected tripeptide. After 2 h the trifluoroacetic acid was evaporated, and the residue coevaporated with ethanol and benzene. The obtained material was dried in a desiccator ($\mathrm{NaOH}, \mathrm{P}_{2} \mathrm{O}_{5}$) overnight, then dissolved in water (15 ml) and the solution adjusted to pH about 9 by addition of Dowex 1×8. The ion-exchanger was filtered off, washed with water and the filtrates were taken down. The residue was dissolved in water (2 ml) and added to a stirred solution of pentaffuorophenyl ester of tert-butyloxycarbonylthreonine ${ }^{4}$ ($200 \mathrm{mg} ; 0.52 \mathrm{mmol}$) in dioxane (5 ml). After stirring at room tempeature for 2 h , the dioxane was evaporated and the residue stirred with dimethylformamide (1 ml) overnight. According to TLC in the system (A), no free tripeptide was already present. The reaction mixture was diluted with ethyl acetate and kept in a refrigerator. The separated tetrapeptide IVa was collected and washed with ethyl acetate; yield $153 \mathrm{mg}(49 \%)$, m.p. $138-141^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-15.5^{\circ}$ (c $0.4,10 \%$ acetic acid). $R_{F} 0.92$ (A), 0.39 (C), 0.68 (F). For $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{O}_{10} \cdot 3 \mathrm{H}_{2} \mathrm{O}(774 \cdot 9)$ calculated: $51 \cdot 15 \% \mathrm{C}, 7 \cdot 54 \% \mathrm{H}, 14 \cdot 46 \% \mathrm{~N}$; found: $50 \cdot 82 \% \mathrm{C}$, $7 \cdot 01 \% \mathrm{H}, 14 \cdot 60 \% \mathrm{~N}$.

Benzyloxycarbonyl-1-aminocyclopropane-1-carbonyl- N^{ε} -
 -benzyloxycarbonyllysyl-prolyl-arginine (IVb)

The Boc group in \mathbf{N}^{α}-tert-butyloxycarbonyl- N^{ε}-benzyloxycarbonyllysyl-prolyl-arginine ${ }^{5}(0.32 \mathrm{~g}$; 0.5 mmol) was removed in the same manner as described for the tripeptide $I I I$. The obtained free tripeptide ($233 \mathrm{mg} ; 0.44 \mathrm{mmol}$) was dissolved in water (1.5 ml) and added to a solution of active ester $I(200 \mathrm{mg} ; 0.5 \mathrm{mmol})$ in dioxane $(4.5 \mathrm{ml})$. After stirring at room temperature for 2 h , the solvents were evaporated, and the residue was stirred with dimethylformamide (1 ml) overnight (according to TLC in the system (A), no free tripeptide was then present). The reaction mixture was diluted with ethyl acetate, set aside in a refrigerator for several hours and the separated tetrapeptide collected and washed with ethyl acetate. Yield $0.31 \mathrm{~g}(94 \%)$ of tetrapeptide $I V b$, m.p. $126-129^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-43 \cdot 6^{\circ}$ (c $0 \cdot 8,10 \%$ acetic acid). $R_{F} 0.64$ (A), 0.52 (B), 0.30 (C). HPLC in acetonitrile-0.2M ammonium acetate (30:70): $k 6 \cdot 62$. For $\mathrm{C}_{37} \mathrm{H}_{5}: \mathrm{N}_{8} \mathrm{O}_{9} .2 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($795 \cdot 9$) calculated: $55 \cdot 84 \% \mathrm{C}, 6 \cdot 96 \% \mathrm{H}, 14 \cdot 08 \% \mathrm{~N}$; found: $55 \cdot 71 \% \mathrm{C}, 6 \cdot 48 \% \mathrm{H}, 14 \cdot 12 \% \mathrm{~N}$.

```
Benzyloxycarbonyl-1-aminocyclopropane-1-carbonyl-N
-benzyloxycarbonyllysyl-1-aminocyclopropane-1-carbonyl-arginine (IVC)
```

The Boc group in protected tripeptide $I I I(270 \mathrm{mg} ; 0.437 \mathrm{mmol})$ was removed in the same manner as described for the preparation of tetrapeptide IVa. After evaporation of solvents, the remaining free tripeptide was dissolved in water $(1.5 \mathrm{ml})$ and added to a stirred solution of the active ester I ($200 \mathrm{mg} ; 0.5 \mathrm{mmol}$) in dioxane (4 ml). The further reaction course and work-up procedure were analogous as in the case of compound IVa. The separated tetrapeptide was filtered, washed with ethyl acetate and dried in a desiccator. Yield $200 \mathrm{mg}\left(62 \%\right.$ of tetrapeptide $I V c$, m.p. $132-134^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}-5 \cdot 6^{\circ}$ (c $0.32,10 \%$ acetic acid)). TLC: $R_{F} 0.92(\mathrm{~A}), 0.37(\mathrm{C}), 0.64$ (F). For $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{9}$. . $\mathrm{CF}_{3} \mathrm{COOH}(850 \cdot 9)$ calculated: $53.64 \% \mathrm{C}, 5 \cdot 80 \% \mathrm{H}, 13 \cdot 17 \% \mathrm{~N}$; found: $53.63 \% \mathrm{C}, 6.05 \% \mathrm{H}$, $13 \cdot 40 \%$ N.

Threonyl-lysyl-1-aminocyclopropane-1-carbonyl-arginine ([Acc ${ }^{3}$]tuftsin Va)

To a solution of tetrapeptide $I V a(135 \mathrm{mg})$ in acetic acid (1 ml) was added $3 \cdot 8 \mathrm{~m}-\mathrm{HBr}$ in acetic acid (1 ml). After standing at room temperature for 1 h , the reaction mixture was diluted with ether. The precipitated hydrobromide was collected on filter, dried in a desiccator over sodium hydroxide, dissolved in water and the solution adjusted to pH 9 by addition of Dowex 1×8.

The ion exchanger was filtered, washed with water and the combined filtrates were concentrated. The residue consisted of two compounds (TLC: $R_{F} 0.41$ and 0.55 (A); HPLC in 0.2 M ammonium acetate-acetonitrile ($99: 1$): $k \cdot 1 \cdot 12$ and $2 \cdot 0$). The material was purified by HPLC on a Zorbax C_{8} column in $0 \cdot 2 \mathrm{~m}$ ammonium acetate. The solvent was evaporated and ammonium acetate removed by freeze-drying. The residue was dissolved in water and again freeze-dried to give $42 \mathrm{mg}(46 \%)$ of tuftsin $V a$, m.p. $110-120^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}-5 \cdot 1^{\circ}$ (c $1 \cdot 0,10 \%$ acetic acid). TLC: $R_{F} 0 \cdot 41$ (A). 0.07 (E), 0.17 (F); $E_{1.7}^{\mathrm{Hi}} 1.03$. Amino acid analysis: Lys 1.01 , Arg 1.03, Thr 1.00, Acc 0.92 .

1-Aminocyclopropane-1-carbonyl-lysyl-prolyl-arginine ([Acc ${ }^{1}$]tuftsin Vb)
Tetrapeptide $I V b(280 \mathrm{mg})$ was deprotected as described for tetrapeptide $I V a$. The obtained deprotected product consisted of two compounds as shown by TLC ($R_{F} 0.44,0.56(\mathrm{~A})$) as well as HPLC ($k 1 \cdot 57,2 \cdot 86$ in $0 \cdot 2 \mathrm{~m}$ ammonium acetate-acetonitrile $99: 1$); only one peak in a mixture of 0.1 m ammonium acetate and acetonitrile. The material was purified by HPLC in 0.2 m ammonium acetate-acetonitrile ($99: 1$). The solvent was evaporated, the ammonium acetate removed by freeze-drying, the residue dissolved in water and again freeze-dried to give $40 \mathrm{mg}(22 \%)$ of tuftsin $V b$, m.p. above $185-195^{\circ} \mathrm{C}$. TLC: $R_{F} 0.44(\mathrm{~A}), 0.07(\mathrm{E}), 0.19(\mathrm{~F}) ; E_{1.7}^{\mathrm{His}} 1 \cdot 10 ;[\alpha]_{\mathrm{D}}-57.9^{\circ}$ (c $0.75,10 \%$ acetic acid). Amino acid analysis: Lys 1.06 , Arg 1.02, Pro 0.99, Acc 0.92.

1-Aminocyclopropane-1-carbonyl-lysyl-1-aminocyclopropane-
-1 -carbonyl-arginine ($\left[\mathrm{Acc}^{1}\right.$, Acc $\left.{ }^{3}\right]$ tuftsin $V c$)
Tetrapeptide $I V C$ (180 mg) was deprotected in the same manner as described for tetrapeptide IVa. Since the deprotection product was completely pure (TLC and HPLC), it was only freeze--dried from its aqueous solution to afford $100 \mathrm{mg}(88 \%)$ of product melting above $215-220^{\circ} \mathrm{C}$, $[x]_{\mathrm{D}}-17 \cdot 2^{\circ}(c 0 \cdot 16,10 \%$ acetic acid); HPLC in $0 \cdot 2 \mathrm{M}$ ammonium acetate-acetonitrile ($99: 1$): k 1.62 ; TLC: $R_{F} 0.41$ (A), 0.09 (E), 0.13 (F); $E_{1.7}^{\mathrm{H} \text { is }} 1.06$. Amino acid analysis: Lys 1.03 , Arg 1.10 , Acc 1.85.

The authors are indebted to Mrs H. Farkašová and Mr J. Zbrožek for the amino acid analyses. The IR spectrum was interpreted by Dr J. Smoliková, elemental analyses were performed in the Analytical Laboratory of this Institute (Dr J. Horáček, Head).

REFERENCES

1. Vomenclature and Symbolism for Amino Acids and Peptides, Recommendations 1983: Eur. J. Biochem. 138, 9 (1984).
2. son Arx E., Faupel M., Brugger M.: J. Chromatogr. 120, 224 (1976).
3. Procházka Z., Buděšinský M., Smolíková J., Trška P., Jošt K.: Collect. Czech. Chem. Commun. 47, 2291 (1982).
4. Kisfaludy L., Low M.. Nyeki O., Szirtes T., Schon I.: Justus Liebigs Ann. Chem. 1973, 1421.
5. Veretennikova N. I., Atare Z. A., Priednice E. J., Chipens G. P.: Bioorg. Khim. 6, 1615 (1980).

Translated by M. Tichý.

